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Summary. In high-dimensional data analysis, sliced inverse regression (SIR) has proven to be an effective
dimension reduction tool and has enjoyed wide applications. The usual SIR, however, cannot work with
problems where the number of predictors, p, exceeds the sample size, n, and can suffer when there is high
collinearity among the predictors. In addition, the reduced dimensional space consists of linear combinations
of all the original predictors and no variable selection is achieved. In this article, we propose a regularized
SIR approach based on the least-squares formulation of SIR. The L2 regularization is introduced, and an
alternating least-squares algorithm is developed, to enable SIR to work with n < p and highly correlated
predictors. The L1 regularization is further introduced to achieve simultaneous reduction estimation and
predictor selection. Both simulations and the analysis of a microarray expression data set demonstrate the
usefulness of the proposed method.
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1. Introduction
There has recently been a surge of interest in analyzing high-
throughput genomic data such as whole genome-wide SNP
data and microarray-based gene expression data. The data set
often consists of a phenotypic response, denoted by Y ∈ IR,
which can be a binary disease indicator (e.g., tumor versus
normal tissue), or a continuous measurement of a patient’s
response to a drug, or time to cancer recurrence (or death)
that is subject to censoring. Meanwhile, high-dimensional ge-
nomic profiles of individual subjects, denoted by X ∈ IRp , with
p indicating the dimension, are recorded; for instance, expres-
sion levels of thousands of genes are measured simultaneously
with microarray technology. There have been extensive stud-
ies to model the phenotypic response Y given the genomic
predictors X; see, for instance, Golub et al. (1999), Dudoit,
Fridlyand, and Speed (2002), and Bura and Pfeiffer (2003).

When p is large, classical modeling approaches often suf-
fer the curse of dimensionality. It is thus natural to consider
dimension reduction prior to model formulation. Sufficient
dimension reduction (SDR) theory (Cook, 1998) has been
developed to reduce the predictor dimension, meanwhile pre-
serving full regression information and imposing few proba-
bilistic assumptions. More specifically, SDR seeks to replace
the p-dimensional predictor X with a d-dimensional vector
ηTX, where η is a p × d matrix with d ≤ p, such that the
conditional distribution function F (Y |X) = F (Y | ηTX). The
subspace spanned by the columns of η, Span(η), is called a
dimension reduction subspace, and the intersection of such
spaces is itself a dimension reduction subspace under mi-
nor conditions (Cook, 1996). Such an intersection, by defi-
nition, is a unique and parsimonious population parameter

that captures all regression information of Y given X, and
thus is the main object of interest in our dimension reduction
inquiry. We call it the central subspace, denote it by SY |X , and
call its dimension, d = dim(SY |X), the structural dimension of
regression (Cook, 1998).

There have been a number of methods proposed to estimate
the central subspace. Among them, sliced inverse regression
(SIR) is one of the first and perhaps the most commonly used
SDR method. Under appropriate conditions, Li (1991) showed
that an estimate of the basis of SY |X can be obtained by the
first d eigenvectors, η1, . . . , ηd, of the decomposition,

Cov(E(X |Y ))ηj = θjΣxηj , (1)

where θ1 ≥ · · · ≥ θd > 0 are the corresponding positive eigen-
values, and Σx = Cov(X). There are both asymptotic and
permutation tests available to determine d, the dimension of
the central subspace (Li, 1991; Cook and Yin, 2001).

SIR estimation in (1) requires the inversion of the predic-
tor covariance Σx . In many applications such as microarray
studies, the number of predictors (i.e., genes) often exceeds
the number of sample observations. In those cases, the usual
sample estimate of Σx is singular and is noninvertible. In ad-
dition, the predictors may be highly correlated, which is often
expected in gene expression data. While the collinearity does
not introduce any theoretical difficulty to SIR, the sample
estimate may become highly variable. To partly circumvent
these problems, singular value decomposition (SVD) has been
employed prior to SIR (Chiaromonte and Martinelli, 2002; Li
and Li, 2004). However, the SVD-based methods mainly fo-
cused on building a predictive model, and it is difficult to
perform individual predictor selection. Alternatively, Zhong
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et al. (2005) proposed a modified version of SIR by replacing
the covariance matrix Σx in (1) with (Σx + τIp), where τ is
a nonnegative constant and Ip is a p-dimensional identity ma-
trix. They recommended an approximate formula to select the
tuning parameter τ . Their idea is intuitive but the solution,
in particular the formula for selecting τ , is ad hoc.

In this article, motivated by the least-squares formulation
of SIR (Cook, 2004), we propose a regularized SIR method
combining both L1 and L2 regularizations. The L2 regulariza-
tion enables SIR to work with n < p and highly correlated
predictors. The L1 regularization achieves simultaneous re-
duction estimation and predictor selection. The rest of the
article is organized as follows. Development of the regularized
SIR is presented in Section 2. Effectiveness of the proposed
method is demonstrated by simulation studies in Section 3,
and a real microarray data analysis in Section 4. We conclude
the article with a discussion in Section 5.

2. Regularized Sliced Inverse Regression
2.1 Least-Squares Formulation of SIR
To describe SIR, consider the standardized predictor Z =
Σ

−1/2
x (X − E(X)). There is no loss of generality of working in

the Z-scale, because SY |X = Σ
−1/2
x SY |Z , where SY |Z denotes

the central subspace of regression of Y on Z. Suppose we
have n independent and identically distributed realizations of
(X, Y). The sample version of Z is Ẑ = Σ̂

−1/2
x (X − X̄), where

X̄ is the grand average of X and Σ̂x is the usual sample co-
variance matrix. Furthermore, suppose the range of the re-
sponse Y is partitioned into h nonoverlapping slices, with ny

observations in the yth slice, y = 1, . . . , h, and let Z̄y denote

the average of Ẑ in the yth slice, and f̂y = ny/n. Cook (2004)
showed that the SIR estimate specified by (1) can be obtained
by minimizing

G(B, C) =

h∑
y=1

f̂y‖Z̄y − BCy‖2, (2)

over B ∈ IRp×d and C = (C1, . . . , Ch) ∈ IRd×h, where the
norm is defined with respect to a standard inner product.
The solution B̂ forms an estimation of the basis of SY |Z .

SIR does not impose any traditional model assumption
on the conditional distribution of Y |X, but instead re-
quires a condition on the marginal distribution of X. It is
called the linearity condition, which states that, for any b ∈
IRp,E(bTX | ηTX) = c0 + c1η

T
1 X + · · · + cdηT

dX, for some con-
stants c0, . . . , cd, where η = (η1, . . . , ηd) forms a basis of SY |X .
Hall and Li (1993) argued that this is not a restrictive as-
sumption, because it holds to a reasonable approximation as p
increases. In addition, when X is elliptically symmetrically dis-
tributed, and particularly, when X follows a multivariate nor-
mal distribution, the linearity condition holds (Eaton, 1986).
The condition can also be induced by predictor transforma-
tion, reweighting (Cook and Nachtsheim, 1994), and cluster-
ing (Li, Cook, and Nachtsheim, 2004).

2.2 SIR with L2 Regularization
Since the standardized predictor Z involves the inverse of Σx ,
the SIR formulation (2) is not directly applicable when the
sample covariance matrix Σ̂x is singular. Its solution may also

become unstable when the predictors are highly correlated.
Ridge regression with L2 regularization has been proposed to
address similar issues in the ordinary least-squares setup. We
adopt the same strategy to SIR.

To avoid the issue of singularity of Σ̂x in the Z scale, we
first derive another least-squares formulation of SIR, which is
equivalent to (2) but is in the original predictor X scale. Note
that in the X scale, G(B, C) in (2) becomes

G(A, C) =

h∑
y=1

f̂y{(X̄y − X̄) − Σ̂xACy}T

× Σ̂−1
x {(X̄y − X̄) − Σ̂xACy}, (3)

where X̄y denotes the average of X in the yth slice, and A =

Σ̂
−1/2
x B. Letting Â be the value of A that minimizes G(A, C),

then Span(Â) estimates the central subspace SY |X . We derive
the following equivalent form of G(A, C).

Lemma 1. Let

G̃(A, C) =

h∑
y=1

f̂y‖(X̄y − X̄) − Σ̂xACy‖2. (4)

For a given C, the minimizer Â of G̃(A, C) in (4) also mini-
mizes G(A, C) in (3).

The proof is given in the Appendix. We note that, as shown
in the proof, the equivalence between (3) and (4) requires the
existence of Σ̂−1

x . However, (4) avoids the Σ̂−1
x term in (3), thus

it can be easily extended to incorporate the regularization
paradigm similarly as in the ordinary least-squares regression.

Based on Lemma 1, we next propose the following ridge
SIR estimator.

Definition 1. For a nonnegative constant τ , let

Gτ (A, C) =

h∑
y=1

f̂y‖(X̄y − X̄) − Σ̂xACy‖2

+ τvec(A)Tvec(A), (5)

where vec(·) is a matrix operator that stacks all columns of the
matrix to a single vector. Let (Â, Ĉ) = arg minA,C Gτ (A, C).

Then Span(Â) is called a ridge SIR estimator of the central
subspace SY |X .

When Σ̂−1
x exists and τ = 0, Gτ (A, C) reduces to G̃(A, C),

which is in turn equivalent to G(A, C), thus the ridge SIR
estimator reduces to a usual SIR estimator. When Σ̂x is not
invertible, a positive τ is incorporated to deal with the singu-
larity of Σ̂x in the estimation procedure.

To minimize (5) for a fixed τ , we propose an alternating
least-squares algorithm as stated below. Straightforward cal-
culation shows that, given A, solution of C can be obtained
by h usual least squares,

Ĉ = (Ĉ1, . . . , Ĉh), with

Ĉy =
(
ATΣ̂2

xA
)−1

ATΣ̂x(X̄y − X̄), y = 1, . . . , h.
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Next, rewrite Gτ (A, C) in the form of least-squares regression,

Gτ (A, C) =

h∑
y=1

f̂y

∥∥(X̄y − X̄) −
(
CT ⊗ Σ̂x

)
vec(A)

∥∥2

+ τvec(A)Tvec(A)

=
∥∥W̃ 1/2Ỹ − W̃ 1/2

(
CT ⊗ Σ̂x

)
vec(A)

∥∥2

+ τvec(A)Tvec(A), (6)

where ⊗ is the Kronecker product, Ỹ = vec(X̄1 − X̄, . . . ,

X̄h − X̄), W̃ 1/2 = D
1/2
f ⊗ Ip, and Df = diag(f̂1, . . . , f̂h). Con-

sequently, given C, the solution of A in (6) is,

vec(Â) =
(
CDfCT ⊗ Σ̂2

x + τIpd

)−1(
CDf ⊗ Σ̂x

)
Ỹ . (7)

We cycle between minimizing A and C until convergence. The
algorithm produces a monotonically decreasing series of eval-
uations of Gτ (A, C), and because Gτ (A, C) ≥ 0, it is guar-
anteed to converge. In our limited simulations, we have tried
various starting values and the algorithm converges to the
same solution, which suggests that the initial values chosen
for A do not affect the ultimate result.

To select the ridge parameter τ in (5), we derive a general-
ized crossvalidation criterion (GCV), following Golub, Heath,
and Wahba (1979):

GCV =

∥∥(Iph − Sτ )W̃ 1/2Ỹ
∥∥2

ph{1 − trace(Sτ )/ph}2 , (8)

where

Sτ =
(
D

1/2
f ĈT ⊗ Σ̂x

)(
ĈDf ĈT ⊗ Σ̂2

x + τIpd

)−1(
ĈD

1/2
f ⊗ Σ̂x

)
.

A detailed derivation of (8) is given in the Appendix. Note
that (8) follows a typical GCV definition, where the numer-
ator is the first term in (6) by plugging in vec(Â) in (7),
whereas the term Sτ is symmetric. The value of τ is selected
to minimize (8). The structural dimension, d = dim(SY |X), is
regarded as known in the proposed algorithm. Estimation of
d will be discussed in Section 2.4.

2.3 SIR with Both L1 and L2 Regularizations
An equally important goal of the analysis, in addition to re-
duction estimation, is to select active predictors. Estimates of
ridge SIR are linear combinations of all the predictors, and
no variable selection is achieved. Following the least abso-
lute shrinkage and selection operator (Lasso) idea (Tibshirani,
1996), we further introduce L1 regularization to the ridge SIR
estimator to induce sparsity in the estimated linear combi-
nations. A similar strategy has been proposed by Ni, Cook,
and Tsai (2005), who coupled L1 regularization with the usual
SIR.

Let (Â, Ĉ) denote the ridge SIR estimator, that is, (Â, Ĉ) =
arg minA,C Gτ (A, C). We next propose the sparse ridge SIR
estimator.

Definition 2. A sparse ridge SIR estimator of the cen-
tral subspace SY |X is defined as Span(diag(α̂)Â), where the

shrinkage index vector α̂ = (α̂1, . . . , α̂p)
T ∈ IRp is obtained by

minimizing

Gλ(α) =

h∑
y=1

f̂y

∥∥(X̄y − X̄) − Σ̂xdiag(α)ÂĈy

∥∥2
(9)

over α, subject to
∑p

j=1 |αj | ≤ λ, for some nonnegative con-
stant λ.

The constrained optimization of (9) can be done by em-
ploying a standard Lasso algorithm. To see this, we first note
that diag(α)ÂĈy = diag(ÂĈy)α, and thus,

Gλ(α) =

h∑
y=1

f̂y‖(X̄y − X̄) − Σ̂xdiag(ÂĈy)α‖2.

Next we write:

Ỹ = vec(X̄1 − X̄, . . . , X̄h − X̄) ∈ IRph,

X̃ = (diag(ÂĈ1)Σ̂x, . . . , diag(ÂĈh)Σ̂x)T ∈ IRph×p.

Then the shrinkage vector α is exactly the Lasso estima-
tor for the regression of Ỹ with ph “observations” on the
p-dimensional “data matrix” X̃. Several Lasso algorithms,
such as Tibshirani (1996), Fu (1998), and Osborne, Presnell,
and Turlach (2000), can be employed to estimate α.

When the Lasso parameter λ ≥ p, α̂j = 1 for j = 1, . . . , p,
and we get a ridge SIR estimator. As λ gradually decreases,
some indices αj are shrunk to zero, indicating the correspond-
ing predictors are not needed for the regression given other
predictors. To select λ, we adopt the family of information
criteria suggested in Ni et al. (2005), including Akaike infor-
mation criterion (AIC; Akaike, 1973), Bayesian information
criterion (BIC; Schwarz, 1978),and residual information cri-
terion (RIC; Shi and Tsai, 2002):

AIC = ph log

(
Gλ(α̂)

ph

)
+ 2pλ,

BIC = ph log

(
Gλ(α̂)

ph

)
+ log(ph)pλ,

RIC = (ph − pλ) log

(
Gλ(α̂)

ph − pλ

)

+ pλ(log(ph) − 1) +
4

ph − pλ − 2
,

where pλ denotes the effective number of parameters in
the Lasso estimator. Following Zou, Hastie, and Tibshirani’s
(2004) discussion on the degrees of freedom of Lasso, we ap-
proximate pλ by the number of nonzero components in the
estimated α̂.

2.4 Estimation of Structural Dimension
In the estimation procedure of the proposed regularized SIR,
we regard d = dim(SY |X) as known. In practice, however, d
needs to be estimated given the data. There exists a number
of asymptotic tests to determine d (Li, 1991; Schott, 1994;
Bura and Cook, 2001), but none is directly applicable for
n < p. The permutation test of Cook and Yin (2001) may
be employed, but it requires an additional independence as-
sumption, and is computationally intensive. Alternatively, we
adopt a criterion proposed by Zhu, Miao, and Peng (2006),
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which estimates d via the number of nonzero eigenvalues of the
matrix Cov(E(X |Y)), or equivalently, the number of eigenval-
ues of the matrix Ω = Cov(E(X |Y )) + Ip that are greater
than one.

Letting δ̂1, . . . , δ̂p denote the eigenvalues of the sample es-

timate Ω̂ of Ω, κ denote the number of δ̂i’s that are greater
than one, and Cn denote a penalty constant, Zhu et al. (2006,
equations (10) to (12)) suggested the following estimator
of d,

d̂ = arg max
m∈{0,1,...,p−1}




n

2

p∑
i=1+min(κ,m)

(log(δ̂i) + 1 − δ̂i)

− Cnm(2p − m + 1)

2




. (10)

They have recommended several forms for the penalty con-
stant Cn . In our case, we simply take Cn = log(n)h/n, and
have found it works well in our simulations.

3. Simulations
3.1 Sample Size Less Than Number of Predictors
Simulation studies were carried out to demonstrate the effec-
tiveness of the proposed method. We first consider the case
when n < p. The data are generated from the following model,
with n = 100 and p = 200.

Y1 = x1 + x1 × x2 + σ0ε.

Components of X = (x1, x2, . . . , xp)
T and the error term ε fol-

low independent standard normal distributions. The parame-
ter σ0 controls the relative strength of signal to noise, and it
is chosen such that Var(E(Y 1 |X))/σ2

0 = 20. The central sub-
space is spanned by (β1, β2), where β1 = (1, 0, 0, . . . , 0)T, β2 =
(0, 1, 0, . . . , 0)T, and the true structural dimension d = 2. The
active predictors are x1 and x2. The response model includes
both a main effect (x1) and an interaction term (x1 × x2).

For this model we focus on the performance of the esti-
mation method in selecting active predictors. We employ two
measures commonly used in biomedical literature, that is, the
true positive rate (TPR), which is defined as the ratio of the
number of correctly identified active predictors to the number
of truly active predictors, and the false positive rate (FPR),
which is defined as the ratio of the number of falsely identified
active predictors to the total number of inactive predictors.
The measures TPR and FPR are also known as sensitivity and
1-specificity, and ideally, we wish to have TPR to be close to
1 and FPR to be close to 0 at the same time.

Table 1 reports the average of TPR and FPR, evaluated
for the estimated β̂1 and β̂2, respectively, based on 100 data
replications. As a comparison, we also reported the perfor-
mance of Lasso (Tibshirani, 1996) and Elastic net (Zou and
Hastie, 2005). Both approaches are based on the ordinary
least-squares (OLS) regression, but Lasso introduced L1 reg-
ularization, whereas Elastic net introduced both L1 and L2

regularizations.
All procedures successfully identified the main effect x1 in

the model; TPR of β̂1 is 1 for all cases. However, both Lasso
and Elastic net failed to select x2 in the interaction term; TPR
of β̂2 is only 0.140 for Lasso, and 0.260 for Elastic net. This is
because both methods are based on the OLS, and in this ex-

Table 1
Average of the true positive rate and false positive rate based
on 100 data replications, for the sparse ridge sliced inverse

regression estimator (SR-SIR), the Lasso, and the Elastic net,
when n < p

Method TPR β̂1 FPR β̂1 TPR β̂2 FPR β̂2

SR-SIR (AIC) 1.000 0.460 0.890 0.460
SR-SIR (BIC) 1.000 0.181 0.850 0.182
SR-SIR (RIC) 1.000 0.053 0.750 0.054
Lasso 1.000 0.051 0.140 0.055
Elastic net 1.000 0.173 0.260 0.176

ample, the population OLS estimator equals Σ−1
x Cov(X, Y1) =

Σ−1
x E(XY1) = Σ−1

x (1, 0, 0, . . . , 0)T. Consequently, neither OLS
nor OLS-based Lasso or Elastic net could identify x2. By con-
trast, sparse ridge SIR selected x2 with a high successful rate,
with TPR of β̂2 ranging from 75% to 89%, although it paid
the price of selecting more false positives. In particular, AIC-
based sparse ridge SIR has the highest FPR, while RIC-based
estimator has the lowest FPR that is comparable to Lasso. In
applications like gene microarray analysis, it is often deemed
more important to identify all the true positives, whereas the
false positives may be further screened by refined biological
experiments. We thus believe the sparse ridge SIR offers a
useful solution.

We also investigated estimation of the structural dimension
d for this example. Table 2, the second row, reports the per-
centages of estimated d values out of 100 data replications.
It is seen that the estimation method given in (10) works
reasonably well.

3.2 Correlated Predictors
We next examined the performance of the sparse ridge SIR es-
timator for correlated predictors, by considering the following
response model,

β1 = (1, 1, 1, 0, . . . , 0)T/
√

3, and U = βT
1 X,

Y2 = 2U + U 2 + σ0ε.

The predictor vector X = (x1, . . . , xp) follows a multivariate
normal distribution with mean 0, and the correlation between
xi and xj is ρ|i−j |, with ρ taking the values {0, 0.1, 0.2, . . . , 0.9}.
The error ε is standard normal and is independent of X. The
parameter σ0 is chosen in the same way as in the previous ex-
ample. We chose n = 200 and p = 20 in this example to focus
on the effect of the predictor correlation on the estimation
methods.

Table 2
The percentages of estimated structural dimension d based on

100 data replications

Response model d̂ = 0 d̂ = 1 d̂ = 2 d̂ = 3 d̂ = 4

Y 1(d = 2) 0.00 0.06 0.54 0.33 0.07

Y 2(d = 1) ρ = 0.3 0.00 0.99 0.01 0.00 0.00
ρ = 0.6 0.00 0.95 0.05 0.00 0.00
ρ = 0.9 0.00 0.91 0.09 0.00 0.00
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Figure 1. Comparison of the sparse ridge SIR estimator and
the usual SIR estimator, measured by the vector correlation
coefficient between the true and the estimated central sub-
space, as the predictor correlation ρ varies. s denotes SIR, a
denotes sparse ridge SIR based on AIC, b denotes sparse ridge
SIR based on BIC, and r denotes sparse ridge SIR based on
RIC.

For comparison purposes, we included the usual SIR esti-
mator. Accuracy of the estimated basis for the central sub-
space, SY |X = Span(β1), under different correlation values of
ρ, is of the primary interest here. The vector correlation co-
efficient ψq given in Ye and Weiss [2003] is employed as an
evaluation criterion, which is defined as ψq = (

∏
d
i=1φ

2
i)

1/2,
where φ2s are the eigenvalues of the matrix BT

2 B1B
T
1 B2, with

B1, B2 denoting the orthonormal bases of the true and the
estimated central subspace, respectively. (Another criterion,
the trace correlation coefficient, in Ye and Weiss [2003] equals
ψq when d = 1, and is thus omitted here.) The criterion ψq

describes the “closeness” of the two subspaces, and ranges be-
tween 0 and 1, with a larger value indicating a better estimate.
When ψq = 1, Span(B1) = Span(B2).

Figure 1 shows the average of ψq for the response model
Y2, as the correlation coefficient ρ varies. Both SIR and the
regularized SIR performed similarly when the predictor cor-
relation is small, whereas the regularized SIR estimator out-
performed SIR when the correlation ρ is large. The advantage
of the regularized estimator over the usual SIR estimator is
clearly seen in the presence of the highly correlated predictors.

We also examined the dimension selection method (10) in
estimating d of the central subspace. In this example, d = 1.
Table 2, rows three to five, report the percentages of estimated
d values for three different ρ values. Estimations are seen to
be quite accurate.

4. Diffuse Large B-Cell Lymphoma Data
Diffuse large-B-cell lymphoma (DLBCL) is the most common
type of lymphoma in adults, and has an annual incidence of
more than 25,000 cases in the United States (Jaffe, 1998).
The survival rate of the standard chemotherapy for DLBCL
is only about 35% to 40%. Thus it is important to predict the
outcome of the chemotherapy and to understand the factors
that influence the survival outcome. Rosenwald et al. (2002)

reported the survival time of 240 DLBCL patients after the
chemotherapy, along with measurements of 7399 genes ob-
tained from cDNA microarrays for each individual patient.
The survival times of these data ranged from about 0 to
21.8 years, and there were 138 deceased patients during the
follow-ups. The goal of the analysis is to predict the survival
time based on gene expression information, and to identify
potential genes that may be related to the patients’ survival.

Following Rosenwald et al. (2002), we divided the patients
into a training group of 160 samples and a testing group of 80
samples. To expedite the computation of the regularized SIR
method, we employed a gene preselection procedure that has
been commonly used in microarray studies, to preselect 329
genes using a univariate Cox test. To further accommodate
the censored response, we adopted the double slicing method
for SIR (Li, Wang, and Chen, 1999; Li and Li, 2004).

Sparse ridge SIR was applied to the training data, obtain-
ing the estimated structural dimension d̂ = 1. The resulting
AIC-based sparse ridge SIR estimator selected 34 genes; both
BIC- and RIC-based estimators selected the same group of
12 genes. Out of those 12 genes selected by BIC and RIC, 11
were selected by AIC as well. Additionally, Rosenwald et al.
(2002) reported four gene signature groups that are believed
to contain potentially important genes related to the risk of
death caused by DLBCL. Among the 34 genes selected by
AIC-based sparse ridge SIR estimator, 11 genes belong to
the four gene signature groups specified by Rosenwald et al.
(2002); among the 12 genes selected by BIC- and RIC-based
estimators, 6 genes belong to the signature groups. We believe
the identified genes would make a good list of candidate genes
for further biological investigation.

We also evaluated the predictive performance of the pro-
posed method. A Cox proportional hazards model was fit
with the derived sparse ridge SIR estimator as the predic-
tor. Three risk groups of patients, the low-risk patients, the
intermediate-risk patients, and the high-risk patients, were de-
fined according to the 33% and 66% quantiles of the estimated
risk scores. Figure 2 shows the Kaplan–Meier estimates of sur-
vival curves for the three groups. It is noted that the sparse
ridge SIR estimator based on all three information criteria
achieved good separation of the three risk groups, which indi-
cates a good model fit to the training data. The log-rank test
of difference among three survival curves yielded the p-value
of 0 for all cases, which confirms our visual examination. The
fitted Cox model was then applied to the testing data, and
the same cutoff values used in the training data set were used
to assign the test samples to the three risk groups. Figure 3
shows the corresponding Kaplan–Meier estimates of survival
curves. The sparse ridge SIR estimator based on AIC again
achieved a good stratification of all three risk groups, with a
p-value of 0.003 for the log-rank test, whereas the estimator
based on BIC and RIC separated the low-risk group with the
intermediate and high-risk groups, resulting in a p-value of
0.017. Overall, the sparse ridge SIR estimator in conjunction
with a Cox proportional hazards model demonstrate compe-
tent model fitting and predictive performance.

5. Discussion
In this article we have proposed an extension of SIR based
on its least-squares formulation. By introducing the L2



6 Biometrics

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to death

D
ea

th
–f

re
e 

su
rv

iv
al

Sparse Ridge SIR (AIC)

0 5 10 15 20
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Time to death

D
ea

th
–f

re
e 

su
rv

iv
al

Sparse Ridge SIR (BIC/RIC)

Figure 2. Kaplan–Meier estimate of survival curves for the three risk groups of patients in the training data. The left-hand
side panel is the AIC-based sparse ridge SIR estimator, and the right-hand side panel is the BIC- and RIC-based sparse ridge
SIR estimator.
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Figure 3. Kaplan–Meier estimate of survival curves for the three risk groups of patients in the testing data. The left-hand
side panel is the AIC-based sparse ridge SIR estimator, and the right-hand side panel is the BIC- and RIC-based sparse ridge
SIR estimator.
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regularization, the SIR method is enabled to work for both
n < p, and for highly correlated predictors. The L1 regulariza-
tion further achieves simultaneous reduction estimation and
variable selection. The proposed method has been shown to
work effectively through both simulations and the real data
application. Our experience also suggests that the proposed
method works reasonably fast. For instance, for the simula-
tion example in Section 3.1 where n = 100 and p = 200, the
computing time was less than 5 minutes on a standard per-
sonal computer, whereas the computing time for the DLBCL
data in Section 4 was about one and a half hours.

We believe this method of coupling L1 and L2 regulariza-
tions with SIR would provide a useful dimension reduction
tool. It would also strengthen the applicability of SDR in
general, by considering possible extensions to other SDR es-
timation methods, such as sliced average variance estimation
(Cook and Weisberg, 1991) and principal Hessian directions
(Li, 1992).
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Appendix

Proof of Lemma 1. It is first noted that G̃(A, C) in (4) can
be written as

G̃(A, C)=
{
Ỹ − (CT ⊗ Σ̂x)vec(A)

}T
W̃

{
Ỹ − (CT ⊗ Σ̂x)vec(A)

}
,

where Ỹ =vec(X̄1 − X̄, . . . , X̄h − X̄), W̃ =Df ⊗ Ip, and Df =

diag(f̂1, . . . , f̂h). Given C, the solution of A for (4) can be
obtained as

vec(Â) =
((

CDfCT
)−1

CDf ⊗ Σ̂−1
x

)
Ỹ .

Similarly, G(A, C) in (3) can be written as

G(A, C)=
{
Ỹ − (CT ⊗ Σ̂x)vec(A)

}T ˜̃W
{
Ỹ − (CT ⊗ Σ̂x)vec(A)

}
,

where ˜̃W = Df ⊗ Σ̂−1
x , and Ỹ and Df are as defined above.

Then, given C, the solution of A for (3) can be obtained as

vec(Â) =
(
CDfCT ⊗ Σ̂x

)−1
(C ⊗ Σ̂x) ˜̃WỸ

=
((

CDfCT
)−1

CDf ⊗ Σ̂−1
x

)
Ỹ .

The conclusion follows.

Derivation of GCV criterion (8). Note that formula (6) can
be viewed as a typical ridge regression problem, by treating
W̃ 1/2Ỹ as the response vector (the y in Golub et al., 1979),
and W̃ 1/2(CT ⊗ Σ̂x) as the predictor matrix (the X in Golub
et al., 1979). With τ replacing the term nλ in Golub et al.
(1979), simple algebra shows that A(λ) in (1.5) of Golub et al.
(1979) becomes Sτ in our GCV definition. With ph denoting
the sample size, and plugging in the corresponding terms in
(1.4) of Golub et al. (1979), we obtain the GCV formula (8).


